

ISO STANDARD ON MASS TERMINOLOGY

-1-

Ørnulf Jan Rødseth

New ISO 23860 standard on terminology

Form 4: New Work Item Proposal

Circulation date:	Reference number: ISO/NP 23860
2018-11-09	(to be given by Central Secretariat)
Closing date for voting:	
2019-02-01	ISO/TC 8
Proposer	N 1331
(e.g. ISO member body or A liaison organization)	
ISO/TC 8	
Secretariat	
SAC	

Scope of the proposed deliverable.

Definitions of terminology for description of MASS concepts related to automation of the operational processes of MASS. This includes the context of the MASS automation system as well as the automation systems themselves and their taxonomy.

Purpose and justification of the proposal*

Most current publications related to the operational aspects of MASS suffer from a lack of standardized terminology. This makes it difficult to compare approaches to automation, to division of responsibilities between human crew and automation and creates problems in defining unambiguous scopes of new studies into the subject. This standard will alleviate these problems and will create a common understanding of what MASS is and is not.

It is not likely that other organizations will undertake this task. IMO would be a natural candidate, but the work requires wider expertise and more details than an IMO working group can easily muster.

Different types of ships

SINTEF

Unmanned vs. autonomous

Personnel type	Present or not on ship
Navigation	None on board
Engineers	Not active
Other crew	Active
Passengers	

- •*0 None*.
- •1 Backup.
- •2 Available.
- •3 In control.

Shore or ship in control?

Human intervention pipeline

5

Type of automation

DA0 - Operator controlled.
DA1 – Automatic.
DA2 – Constrained autonomous.
DA3 – Fully autonomous.

Sheridan's ten LOA			2	3
human does the whole job up to the point of				
turning it over to the computer to implement				
computer helps by determining the options				
computer helps to determine options and				
suggests one, which human need not follow				
computer selects action and human may or				
may not do it				
computer selects action and implements it if				
human approves				
computer selects action, informs human in				
plenty of time to stop it				
computer does whole job and necessarily tells				
human what it did				
computer does whole job and tells human				
what it did only if human explicitly ask				
computer does whole job and decides what				
the human should be told				
computer does the whole job if it decides it				
should be done, and if so , tells human, if it				
decides that the human should be told				

Characterization of autonomy

Use some ideas from SAE J3016?

Context of the autonomous ship

Ship navigation, but also - commercial operations

- cargo operations

- ...

SINTEF

Ship systems architecture ?

Voyage phases

Ship function decomposition

Main	Sub-group	Use	Description	
group				
1. Voyage				
1.1	Plan	SCC	Create and maintain a voyage plan based on instructions from shore and known sailing constraints, including planning for port calls and other events.	
1.2	Nautical information	SCC	Keep track of information related to voyage, nautical publications, weather forecasts, tide tables, port instructions, legislative documents etc.	
1.3	Location	US	Determine where the ship is and where it is moving in relationship to its voyage plan.	
1.4	Economize	US	Monitor and assess the operational and economical parameters of a voyage, including fuel consumption, late arrivals etc. Determine corrective measures.	
2. Sailing				

Cyber security? On what level?

Human factors? On what level?

Other standards?

IMO FAL ship reporting harmonization group

Harmonized Data Modelling Group – S-100

Individual data modelling developments in IEC and ISO

Digital Transport Logistics Forum

How much is applicable to ordinary ships ?

- ICT Architecture
- Context (parts)
- Automation and human factors
- Cyber security?
- Functional decomposition
- ???

Teknologi for et bedre samfunn